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ABSTRACT 

The d-th symmetric product C (d) of a curve C defined over a field K is 

closely related to the set of points of C of degree _< d. If K is a number 

field, then a conjecture of Lang [Hi] proved by Faltings [Fa2] implies if 

C(d)(K) is an infinite set, then there is a K-rational  covering of C -+ P~K 

of degree _< 2d. As an application one gets tha t  for fixed field K and fixed d 

there are only finitely many primes l such tha t  the set of all elliptic curves 

defined over some extensions L of K with [L : K] _< d and with L-rational 

isogeny of degree l is infinite. 

Let K be a field with absolute Galois group GK, and C / K  a projective absolutely 

irreducible regular curve with Jacobian variety J = J(C) .  For d E N let C d be 

the direct product of d copies of C. Divide C d by the symmetric group Sd to 

get the d-th symmet r i c  p roduc t  C (d) = Cd/Sd of C. Let /~ be the algebraic 

closure of K. Then C(d)(f() ,  the set of algebraic points of C (d), corresponds 

one-to-one to the set {P1 + " "  + Pd; Pi E C(/~)} of positive/7/-rational divisors 

of degree d of C. Throughout the whole paper we will assume that C has a 

K-rational point P0- 

Let L be an extension field of K which is separable over K with nL = 

[L : K] _< d. Let Q be an L-rational point of C. We cal lQ apoin t  of C o f  

degree _< d. Let T1,...,  T,~L be the different embeddings of L into Ks over K and 

Q~ = T~(Q). Then Q1 + " "  + Q,~L + (d - nL)" Po is a K-rational point of C (d). In 

particular, c (d ) (K)  is an infinite set if and only if C has infinitely many points 

of degree _< d over K. 
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Hence the GK-conjugacy classes of points of C of degree < d can and will be 

interpreted as subsets of C (4)(K). Define 

~: C (d) ~ J 

by r + " "  + Pd) = [P1 + " "  + Pd -- dPo] where [] denotes the divisor class. The 

image Wd of r is a closed subscheme of J. Let n(d) be the number of solutions 

of the equation 
d 

e~ = d with e~ E {0, 1, 2}. 
i : 1  

A very easy observation is: 

P R O P O S I T I O N  1 : 

i) Assume tha t  ~lC(a)(g) is not injective. Then there is a K-rational covering 

lr: C --+ IP~K of degree <_ d. 

ii) Assume that there is a point P 6 c(d)(K) and at least n(d) + 1 elements 

bo,...,b,~(~) 6 J(K~) such that ~(P)  =t= bi 6 Wd(Ks). Then there is a 

K-rational covering r : C -* P[K of degree <_ 2d. 

Proof: i) If r + " "  + Pd) = V(Q1 + . . .  + Qd), then [P1 + " "  + Pd - dPo] = 

[Q1 + " "  + Qd - dPo] and hence the K-rational divisor P1 + " "  + Pd is linearly 

equivalent to the (different) divisor Q1 + " "  + Qd, and so there is a non-constant 

function f E K(C), the function field of C, with a pole divisor of degree <_ d. 

Hence [K(C):  g ( f ) ]  <_ d. 

ii) By assumption, for each 0 < i < n(d) there exist Qij,Rij E C(K,),  j = 

1, . . - ,  d such that 
~(Qil + " "  +Q~d) = ~(P)  + bi, 

~(Ril + . . .  + Rid) = r  - bi. 

Hence, [Qil + " "  + Q~d + Ril + - "  + P~d] = [2P]. 

Let Q1,. . .  ,Qd,R1, . . .  ,R~ be points in C such that 

(1) Q1 + " "  + Qd + R1 + . . .  + Rd = 2(P1 + . . .  + P~). 

Suppose that P1 , . . . ,  Pd are distinct. Denote the number of occurrences of Pj in 

the d-tuple (Q1 ,Qd) by ej. Then 0 < ej < 2 and d ' " "  )-~j=! ej = d. Hence, the 

number of (Q1,-.-,  Qa) E C(~)(K~) for which there exist (R1, . . . ,  Rd) E C(~)(K,) 

such that (1) holds is n(d). If P1, . . . ,  Pd are not necessarily distinct, this number 
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is at most n(d). Since b0 , . . . ,  bn(d) are distinct, there exists at least one i such 

that 

Qil + "'" + Qid + Ril + ' "  + Rid ~ 2P. 

It follows that the dimension of the space LK, (2P) of Ks-rational functions with 

pole divisor < 2P has dimension > 1. As this dimension is invariant under 

separable extensions of the field of constants dimgLg(2P)  > 1. Hence there 

is a K-rational non-constant function f with pole divisor dividing 2P and so 

[C(K) : g ( f ) ]  _< 2d. | 

COROLLARY 1: Assume that for a P �9 c(d)(K) the scheme 

- r 

contains a subgroup of J(Ks) of order > n(d). 

i) I f  K is an infinite field, then C has infinitely many points of degree <_ 2d. 

ii) Let K be a finite field with q elements. Then [C(K)[ _< 2d(q + 1). 

Proo~ The assumptions of the corollary imply assumption ii) of the proposition 

and so we know that there is a K-rational covering map 

r:  C ~ F~K of degree _< 2d. 

Hence for all P0 �9 PI (K)  we have: #{~r-l(P0) N C(K)}  < 2d and hence ii) 

follows, and for P �9 ~r-t(Po)(K,) we have degree (P)  < 2d, and so i) follows. 
| 

Much deeper than proposition I is kind of a converse of the corollary for special 

fields K. We restrict ourselves to number fields. 

PROPOSITION 2: Assume that K is a number field and that C has infinitely many 

points of degree <_ d over K. Then there is a K-rational covering ~r: C ~ P~K of 

degree <_ 2d. 

Proos I f  r is not injective, the assertion of the proposition follows from 

proposition 1. So we can assume that Wd(K) is an infinite set. Faltings ([Fa2]) 

proved that there are finitely many elements Xl,. . . ,x,~ of Wa(K) such that 

Wd(K) -- Ui~=l[xi + Ai(K)] with Ai abelian subvarieties of J .  Thus, there 

exists i such that Ai(K) is infinite and xi + A~(K) C ~(C(a)(K)) .  In particular 

there exist bo E Ai(K) and P E C(d)(K) such that x~ + bo = ~ (P ) .  For each 
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a E A, (K)  we have (I)(P) 4- a = x, + (bo + a) C Wd(K,). Since A,(K)  is infinite, 

the assumption of ii) of Proposition 1 is satisfied. Hence, it conclusion is also 

satisfied. | 

Remark: There are curves with infinitely many points of degree d and with 2d 

as minimal covering of degree 2d' over y1. As examples one can take coverings of 

degree d of elliptic curves. For d < 3 these are the only possibilities (cf. [A-H]). 

D. Abramovich announced in [A] that for large d there are examples of curves C 

for which C (d) has Abelian subvarieties with minimal covering degree 2d over p1 

which have no elliptic subfield. | 

Now we will give an arithmetical application of the results proved above. 

Let K be a number field and p a prime divisor of K with residue field kp. For 

each i in a set I let Ci be a curve defined over K of genus gi. The following 

definition is motivated by coding theory (cf. [F-P-S]): 

Definition: (Ci)ie I behaves asymptotically good at p, if 

a) all curves Ci have good reduction C~')mod p and 

b) l iminfiel  IC}P)(kp)l  = ~ .  t 

PROPOSITION 3: We assume that (Ci)ie~ behaves asymptotically good at p. 

Then for a / /d  E N there are only anitely many i E I such that Ci has inanitely 

many points of degree < d. 

Proof'. If (Ci)(d)(K) is infinite, then there is a covering 

Iri: C i ~ P~K 

with degree (Tri) < 2d. By reduction theory (cf. [Deu]) this implies that  there 

is a kp-rational covering r ~ : (Ci) (~') ~ ]P~ko of degree < 2d, too, and hence 

lCi(kp)] < 2d([kp[ + 1), and by assumption this can occur only finitely often. 
| 

COROLLARY 2: For d E N we have: For all prime numbers I > 120d there are 

only anitely many elliptic curves detined over number aelds L with [L : (~ < d 

having an L-rational isogeny of degree I. 

Proof: Take K = Q(v~) .  Then 2 generates a prime ideal in the ring of integers 

of K with quotient field of 4 elements. The family of curves 

(Xo(l))l an odd prime 
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behaves asymptotically good at the prime corresponding to 2; and one knows 

that [Xo(l)(~)(k~[ > [~ ]  + 1. So we can apply the proof of proposition 3 and 

get: If 2d. 5 < ~ then Xo(l)(d)(K) is finite. Since the L-rational points of Xo(1) 

parametrize elliptic curves defined over L with L-rational isogeny of degree l, the 

corollary follows. | 
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